
Introduction

Tiny Probabilities of Vast Value

abstract: This chapter explores different approaches to cases that involve

tiny probabilities of huge payoffs. The main approaches discussed are Proba-

bility Fanaticism, Boundedness and Probability Discounting. First, the chap-

ter discusses two arguments for maximizing expected utility: the long-run

argument and representation theorems. Next, it investigates Probability Fa-

naticism, on which tiny probabilities of huge positive or negative payoffs can

have enormous positive or negative expected utility (respectively). Various

arguments for and against Probability Fanaticism are discussed. Then, the

chapter considers Boundedness, namely, the idea that utilities are bounded.

Finally, the chapter discusses Probability Discounting, on which tiny prob-

abilities should be ignored in practical decision-making. Some other ap-

proaches are also discussed briefly. The chapter concludes that the para-

doxes involving tiny probabilities of vast value show that some intuitively

compelling principles of rationality must be given up.
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1 Pascal’s Hell

In the beginning, on a small planet in the Solar System, in the Milky Way galaxy…

Satan: I have an offer for you, Pascal, as I have heard that you might be interested

in a small probability of a huge payoff.

Pascal: Anything that maximizes expected utility!

Satan: Great! And your utility function is unbounded, am I right?1

Pascal: Yes, and additive in terms of people’s happy days of life.

Satan: Excellent. So, the offer is this: I will flip a coin, and if it lands on heads, I

will help humanity settle on new planets in faraway galaxies and live in bliss until

the heat death of the Universe.2 Until the heat death happens, it will be like heaven.

But if the coin lands on tails, then everyone on Earth will suffer excruciating pain

for the next fifty years. That’s the offer. If you decide to accept it, I will return to

Earth every fifty years and give the same offer until either you (or your descendants)

refuse the offer, the coin lands on heads, or the Sun expands and makes life on

Earth impossible. If you decide not to accept the offer, humanity will live its earthly

existence as mere mortals until life on this planet is no longer possible (humanity

will not be able to expand out from Earth without my help!)

Pascal: Your offer sounds great—even odds of Utopia! And if we don’t win this

time, we’ll almost certainly win eventually.

Satan: Oh, pardon me, I forgot to say that my coin is somewhat biased. If you
1The utility function does not necessarily have to be unbounded for this case to work—it is

enough that the upper bound is very high and the lower bound very low. Chapter 1 of this thesis
shows that standard axiomatization of Expected Utility Theory require a bounded utility function.

2This is the fate of the Universe in which Pascal and Satan live.
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accept all the (20 million) offers, the probability of heads happening at least once is

one-in-a-googolplex. I admit the odds aren’t great. But if the coin lands on heads,

I will create a thousand googolplex happy Earth-like planets.

Pascal: Not to worry, the offer is still amazing. The expected value of taking those

gambles is clearly greater than the expected value of rejecting them. Actually, its

expected value might even be greater than the expected value of the offer I initially

thought you were making… So, I’m positively surprised.

Satan: Oops, I made a mistake. I read the wrong page. The instruction manual

(Creating Hell) says that the probability of heads ever happening on Earth is one-

in-Graham’s-number. But it is in my power to create any finite number of happy

Earth-like planets, so I believe I can still give you a good offer. If the coin lands on

heads, I will create a million Graham’s number of happy Earth-like planets.3

Pascal: Now your offer is even better! Although I dread the almost certain torture

for everyone on Earth for the next billion years, the expected value of your offer is

far greater than the expected value of not taking it. So, rationality compels me to

accept it.

Pascal and Satan then agree on the deal, and Satan flips the coin. Unsurprisingly,

it lands on tails.

Satan: You and everyone on Earth will now suffer excruciating pain for the next

fifty years.

Pascal: Oh well. I made the right choice, given the information I had. And the

future is still great in expectation. Thank you for your offer.
3The Universe Pascal and Satan live in is much larger than our Universe.
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Satan: I’m always happy to help. See you again in fifty years!

Pascal: See you in fifty (long) years! You are always welcome here.

Satan: I never imagined persuading people to enter (finite) hell would be this

easy…

∗ ∗ ∗

So Satan traveled fromone planet to another, and the inhabitants of those planets—

also expected utilitymaximizers with unbounded utilities—always accepted his of-

fer. And they all lived happily ever after (in expectation). But according to Sa-

tan’s instruction manual, the probability of the coin ever landing on heads was

merely one-in-a-googolplex, so the Universe was almost certain to be void of joy

and laughter.4

2 Maximizing expected utility

The topic of this thesis is how we should treat tiny probabilities of vast value. This

chapter goes over different possible approaches. I will start by considering the idea

that rational agents maximize expected utility. Two arguments for maximizing ex-

pected utility will be discussed: the long-run argument and representation theo-

rems. I will then present two puzzling cases that involve tiny probabilities of huge
4This dialogue is based on Pascal’s Mugging by Bostrom (2009), which in turn is based on

informal discussions by various people, including Yudkowsky (2007b). Pascal’s Mugging is similar
to Pascal’s Wager, except that the former does not involve infinite utilities. Pascal (1958) famously
argued that one should believe in God because of the possibility of gaining an infinitely good payoff
in Heaven: “Let us weigh the gain and the loss in wagering that God is. Let us estimate these two
chances. If you gain, you gain all; if you lose, you lose nothing. Wager, then, without hesitation that
He is.”
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payoffs. The subsequent sections explore expected-utility maximization with un-

bounded and bounded utility functions, as well as alternatives to expected-utility

maximization.

2.1 The long-run argument for maximizing expected utility

According to standard decision theory, a rational agent alwaysmaximizes expected

utility. An act’s expected utility is calculated by summing the utilities of its possible

outcomesweighted by their probabilities of occurring, where ‘utility’measures how

preferable (or valuable) some outcome is compared to the alternatives. Let EU (𝑋)

denote the expected utility of prospect 𝑋, and let 𝑋 ≿ 𝑌 mean that 𝑋 is at least

as good as 𝑌. Also, let 𝑂 be the set of possible outcomes, 𝑝𝑋(𝑜) the probability of

outcome 𝑜 in prospect 𝑋 and 𝑢(𝑜) the utility of 𝑜. Then, more formally, Expected

Utility Theory states the following:

Expected Utility Theory: For all prospects 𝑋 and 𝑌, 𝑋 ≿ 𝑌 if and

only if EU(𝑋) ≥ EU(𝑌), where

EU(𝑋) = ∑
𝑜∈𝑂

𝑝𝑋(𝑜)𝑢(𝑜).

Why should one accept Expected Utility Theory? One argument for maximiz-

ing expected utility—the long-run argument—states that expected-utility maxi-

mization is the best policy in the long run. This is because, in the long run, the

average amount of utility gained per trial is overwhelmingly likely to be close to
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the expected value of an individual trial.5 However, it is not certain that the aver-

age utility gain per trial would be close to the game’s expected utility—it is merely

highly likely.6 Thus, the argument must be that expected-utility maximization is

overwhelmingly likely to be the overall best policy. And, if something is over-

whelmingly likely to be the overall best policy, then one should do that. So, one

should maximize expected utility.

The long-run argument only works under certain further assumptions about

what sorts of gambles will arise in the long run. For example, in Pascal’s Hell, not

maximizing expected utility is overwhelmingly likely to be the overall best policy.

So, by the same argument, one should not maximize expected utility in this case.

Thus, the principle fromwhich the long-run argument gets its intuitive support rec-

ommends against expected-utilitymaximization in some cases. And, the true prin-

ciples of rationality (if there are any) should apply even in hypothetical cases such

as Pascal’s Hell. Expected-utility maximization might be overwhelmingly likely to

be the overall best policy for us. But it is not so always and for everyone. If one

accepts the principle that one should choose whatever policy is overwhelmingly

likely to be best overall (either for oneself or the group of all agents), then, under

some circumstances, one should not maximize expected utility. So, some other

argument is needed to establish that one should always do so.7

5Briggs (2019).
6The Strong Law of Large Numbers implies that, for any arbitrarily small real umber 𝜖 > 0, the

probability that the average payoff of a prospect falls within 𝜖 of its expected utility converges to 1 as
the number of trials increases. In other words, as the sample size goes to infinity, the average gain
per trial will become arbitrarily close to the prospect’s expected utility with probability 1. So, in
the long run, the average utility associated with a prospect is virtually certain to equal its expected
utility. See Briggs (2019, §2.1).

7See Briggs (2019, §2.1) for more discussion of the long-run argument for expected-utility
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2.2 Representation theorems

Another argument for maximizing expected utility relies on representation theo-

rems, such as the von Neumann-Morgenstern axiomatization of Expected Utility

Theory. This representation theorem shows that the following axioms together en-

tail Expected Utility Theory: Completeness, Transitivity, Independence and Con-

tinuity.8 Let 𝑋 ≻ 𝑌 mean that 𝑋 is strictly preferred (or simply ‘preferred’) to 𝑌.9

Also, let 𝑋𝑝𝑌 be a risky prospect with a 𝑝 chance of prospect 𝑋 obtaining and a

1 − 𝑝 chance of prospect 𝑌 obtaining. These axioms then state the following:

Completeness: 𝑋 ≿ 𝑌 or 𝑌 ≿ 𝑋.

Transitivity: If 𝑋 ≿ 𝑌 ≿ 𝑍, then 𝑋 ≿ 𝑍.

Independence: If 𝑋 ≻ 𝑌, then 𝑋𝑝𝑍 ≻ 𝑌 𝑝𝑍 for all probabilities

𝑝 ∈ (0, 1].

Continuity: If 𝑋 ≻ 𝑌 ≻ 𝑍, then there are probabilities 𝑝 and 𝑞 ∈

(0, 1) such that 𝑋𝑝𝑍 ≻ 𝑌 ≻ 𝑋𝑞𝑍.

Agents who conform to said axioms can be represented as maximizing ex-

pected utility. The argument for expected-utility maximization from represen-

tation theorems states that these axioms are the axioms of rational preference.10

Thus, rational agents can be represented as maximizing expected utility. But why

maximization.
8See vonNeumann andMorgenstern (1947), Jensen (1967, pp. 172–182) andHammond (1998,

pp. 152–164).
9Some prospect 𝑋 is strictly preferred to another prospect 𝑌 when 𝑋 is weakly preferred to 𝑌,

but 𝑌 is not weakly preferred to 𝑋.
10Briggs (2019) and Zynda (2000).
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should one think these are the axioms of rational preference? First, one might

consider them intuitively plausible, so it might seem intuitively right that rational

agents satisfy these axioms. Alternatively, they can be supported by money-pump

arguments. A money-pump argument intends to show that agents who violate

some alleged requirement of rationality are vulnerable to making a combination

of choices that leads to a sure loss. There are money-pump arguments for Com-

pleteness, Transitivity, Independence and Continuity.11 So, if vulnerability to this

sort of exploitation is a sign of irrationality, then one ought to satisfy the axioms

that together entail Expected Utility Theory. Thus, rational agents maximize ex-

pected utility.12

2.3 Tiny probabilities of vast utilities

However, maximizing expected utility seems to lead to counterintuitive choices

in cases that involve tiny probabilities of huge payoffs (at least if utilities are un-

bounded or if the upper bound is very high or the lower bound is very low). One

such case was presented earlier. It is based on the following case:13

Pascal’s Mugging: A stranger approaches you and promises to use

magic that will give you a thousand quadrillion happy days in the Sev-

enth Dimension if you pay him a small amount of money.

Should you pay the stranger? There is a very small but non-zero probability that
11See Gustafsson (forthcoming).
12As discussed later, these axioms imply a bounded utility function.
13Bostrom (2009). This case is based on informal discussions by various people, including

Eliezer Yudkowsky (2007b).
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the stranger is telling the truth. And if he is telling the truth, then the payoff is

enormous. Provided the payoff is sufficiently great, the expected utility of paying

the stranger is greater than that of keeping the money. Also, if you have a non-

zero credence in him being able and willing to deliver any finite amount of utility,

then he can always increase the payoff until the offer has positive expected utility,

at least if your utilities are unbounded.14 So, someone who maximizes expected

utility with an unbounded utility function (or with a high enough upper bound)

would pay the stranger—which seems counterintuitive.

Another case that involves tiny probabilities of huge payoffs is the St. Petersburg

paradox introduced by Nicolaus Bernoulli:15

St. PetersburgGame: A fair coin is flipped until it lands on heads.16

The prize is then $2𝑛, where 𝑛 is the number of coin flips.

While Pascal’s Mugging involves large finite payoffs and a finite number of possi-
14Contrary to this, Baumann (2009, p. 447) argues that the larger the payoff themugger promises

to deliver, the lower the probability you should assign to the proposition that he will stick with his
promise. Moreover, Baumann (2009, p. 447) argues that your probabilities should go down faster
than the stranger’s offer’s utilities go up. Relatedly, RobinHanson has suggested that in a scenario in
whichmany individuals exist, they cannot all have total control over each other’s existence. So, your
credence in being able to influence them all should be penalized in proportion to the number of
individuals that exist. Thus, credences in themugger telling the truth should decrease in proportion
to the possible payoff. See Hanson (2007) and Yudkowsky (2007a). But, in the version of Pascal’s
Mugging presented in this chapter, the stranger promises to prolong your life rather than also help
very many orphans (as in Bostrom’s version). And, it is less surprising to be in a special position to
have so much control over one’s future self.

15Nicolaus Bernoulli originally proposed a version of this game in 1713. The game was simpli-
fied by Gabriel Cramer in 1728 and published by Daniel Bernoulli in 1738. See Pulskamp (2013)
and Bernoulli (1954). There are variants of the St. Petersburg game that do not seem to make any
sense by the lights of Expected Utility Theory because they have no unique expected utility. See, for
example, Nover and Hájek (2004) on the Pasadena game.

16What happens if the coin never lands on heads? We may suppose that, in that case, the player
wins nothing. As this is a zero-probability event, it does not affect the expected utility of the game.
See Chapter 2 of this thesis on Expected Utility Theory and possible states of zero probability.
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ble outcomes, the St. Petersburg game involves arbitrarily large finite payoffs and

infinitely many possible outcomes. The St. Petersburg game has infinite expected

monetary value, so an agent who maximizes expected monetary value would pay

any finite amount to play it. But again, this seems counterintuitive. As Nicolaus

Bernoulli (agreeing with his friend Gabriel Cramer) writes: “[T]here is no person

of good sense who wished to give merely 20 coins.”17 Daniel Bernoulli (cousin of

Nicolaus Bernoulli) argues that the expected utility of the game is finite because of

the diminishing marginal utility of money.18 However, one can change the game

slightly to bypass this objection by changing the prize from money to something

with no diminishing marginal utility, such as (possibly) days of life.19

To summarize, Expected Utility Theory states that rational agents maximize

expected utility. Expected UtilityTheory can be supported with the long-run argu-

ment, onwhich one shouldmaximize expected utility because it is overwhelmingly

likely to be the best policy in the long run. Alternatively, Expected Utility Theory

can be supported by representation theorems. This argument states that the ax-

ioms of Expected Utility Theory are the axioms of rational preference. However,

maximizing expected utility seems to lead to counterintuitive choices in cases that

involve tiny probabilities of huge payoffs, such as Pascal’s Hell, Pascal’s Mugging

and the St. Petersburg paradox. Expected-utility maximization gives counterin-
17Pulskamp (2013, p. 6).
18Bernoulli (1954).
19Monton (2019, p. 2). This is related to the Super St-Petersburg Paradox which Samuelson

(1977, p. 32) attributes to Menger (1934) (see Menger [1967] for an English translation). Menger
(1967, pp. 217–218) shows that if utilities are unbounded, one can always create a Super St-
Petersburg game, in which the payoffs grow sufficiently fast so that the expected utility of the game
is infinite.

10



tuitive recommendations in such cases if utilities are unbounded or if the upper

bound is very high or the lower bound very low. The next section discusses an im-

plication of expected-utility maximization with an unbounded utility function; the

subsequent section explores expected-utility maximization with a bounded utility

function. The idea that tiny probabilities should be ignored in practical decision-

making is investigated in §5. Finally, §6 briefly discusses some other approaches.

3 Probability Fanaticism

This section discusses arguments for and against Probability Fanaticism, namely,

the idea that we should let tiny probabilities of vast utilities dominate the expected

utility calculations. Aswewill see, there are strong arguments for and against Prob-

ability Fanaticism, as some plausible principles support this idea while others un-

dermine it.

3.1 The Continuum Argument for Probability Fanaticism

There seems to be something wrong with a theory that lets tiny probabilities of

huge payoffs dictate one’s course of action. It might even seem fanatical. Thus, we

may call this view Probability Fanaticism. Probability Fanaticism is the idea that

tiny probabilities of huge positive or negative payoffs can have enormous positive

or negative expected utility (respectively). Formally, it states the following:20

Probability Fanaticism:
20Wilkinson (2022, p. 449). Beckstead and Thomas (2020) call this ‘Recklessness’.
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i Positive Probability Fanaticism For any probability 𝑝 > 0, and

for any finite utility 𝑢, there is some large enough utility 𝑈 such

that probability 𝑝 of 𝑈 (and otherwise nothing) is better than

certainty of 𝑢.21

ii Negative Probability Fanaticism For any probability 𝑝 > 0, and

for any finite negative utility −𝑢, there is some large enough neg-

ative utility −𝑈 such that probability 𝑝 of −𝑈 (and otherwise

nothing) is worse than certainty of −𝑢.

Probability Fanaticism is supported by a Continuum Argument.22 Consider for

example the following case:23

Devil at Your Deathbed: You have one year of life left. But the devil

appears and offers you ten years of happy life instead, with probability

0.999. You accept the offer. But the devil then offers you 100 years

of happy life instead, with probability 0.9992—just 0.1% lower. After

some 50,000 trades, you find yourself with a 0.99950,000 probability of

1050,000 years of happy life. Predictably, you die shortly thereafter.

In this case, each deal seems better than the one before. Accepting each deal mas-

sively increases the payoff while decreasing its probability by a tiny percentage.

However, accepting all trades means trading a certain good payoff (one year of

happy life) for an extremely tiny probability of a great payoff.
21In this context, ‘otherwise nothing’ means retaining the status quo or baseline outcome.
22This argument is from Beckstead (2013, §6) and Beckstead and Thomas (2020, §1).
23Beckstead and Thomas (2020, pp. 4–5)
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If 𝑝 is a probability and 𝑛 is a number of happy lives, then let 𝑝 ⋅𝑛 be a prospect

that gives probability 𝑝 of 𝑛 happy lives (and otherwise nothing). Then, the follow-

ing principle supports accepting all the trades:24

Anti-Timidity: For any probabilities 𝑝 ≫ 𝑞 and numbers of happy

lives 𝑁 ≫ 𝑛, 𝑝 ⋅ (𝑛 + 𝑁) ≻ (𝑝 + 𝑞) ⋅ 𝑛.

Anti-Timidity says that one can always compensate for a tiny decrease in the prob-

ability of a good outcome by increasing the payoff sufficiently. Anti-Timidity is

plausible. However, it implies (Positive) Probability Fanaticism; repeated applica-

tions of Anti-Timidity (together with transitivity) tell us that a tiny probability of

a great payoff is better than certainty of a good payoff.25 Whichever payoff one

starts with, and for any tiny probability 𝑝 > 0, there is some great enough payoff

such that probability 𝑝 of the great payoff (and otherwise nothing) is better than

certainty of the original payoff. So, to deny Probability Fanaticism, one must reject

Anti-Timidity or transitivity—yet both seem intuitively compelling.
24Russell (2021, p. 7) and Beckstead and Thomas (2020, p. 2).
25A similar argument can be given to support Negative Probability Fanaticism. Instead of Anti-

Timidity, this argument uses the following principle:

Negative Anti-Timidity: For any probabilities 𝑝 ≫ 𝑞 and numbers of unhappy
lives 𝑁 ≫ 𝑛, (𝑝 + 𝑞) ⋅ 𝑛 ≻ 𝑝 ⋅ (𝑛 + 𝑁).
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3.2 More is Better and Simple Separability imply Probability Fa-

naticism

Another argument for Probability Fanaticism is that it follows from two plausible

principles, namely, More is Better and Simple Separability.26 More is Better states

the following:27

More is Better: For probabilities 𝑝 ≫ 𝑞 and numbers 𝑁 ≫ 𝑛, 𝑝 ⋅

𝑁 ≻ 𝑞 ⋅ 𝑛.

More is Better states that it is better to have a much higher probability of many

more happy lives than a smaller probability of fewer happy lives.

Let 𝑋 be a prospect that concerns what is going on in the part of the world

we might make any difference to, and let 𝑌 be a prospect that concerns what hap-

pens somewhere far away, such as a distant galaxy. Also, let 𝑋 ⊕ 𝑌 be the com-

bined prospect of the near prospect 𝑋 and the far prospect 𝑌. Finally, let a ‘simple

prospect’ be a prospect that has only a finite number of possible outcomes. Then,

Simple Separability states the following:28

Simple Separability: For all simple near prospects 𝑋 and 𝑌, and any

simple far prospect 𝑍, 𝑋 ≻ 𝑌 if and only if 𝑋 ⊕ 𝑍 ≻ 𝑌 ⊕ 𝑍.

Denying Simple Separability means that uncertainty over what happens in distant

places can be relevant to what we ought to do, even when we cannot affect what
26This argument is also from Beckstead and Thomas (2020, §3.2). The presentation follows

closely Russell (2021, §2).
27Russell (2021, p. 6).
28Russell (2021, p. 15).

14



happens in those distant places.

To see how More is Better and Simple Separability imply Probability Fanati-

cism, consider the following prospects:

More vs. Less: Let 𝑝 ≫ 𝑞 and 𝑁 ≫ 𝑛. Also, let the probabilities of

states 1, 2 and 3 be 𝑝, 𝑞 and 1 − 𝑝 − 𝑞 (respectively).

More Gives 𝑁 happy lives in state 1 and nothing in states 2 and 3.

Less Gives 𝑛 happy lives in state 2 and nothing in states 1 and 3.

Suppose you face a choice betweenMore and Less, while the inhabitants of a distant

Earth-like planet face the following prospect:

Far Gives 𝑛 happy lives in state 1 and nothing in states 2 and 3.

Given that the Earth-like planet faces prospect Far, the choice you face is be-

tween More ⊕ Far and Less ⊕ Far (see table 1). And, given that More is better

than Less (by More is Better), it follows by Simple Separability that More ⊕ Far is

better than Less ⊕ Far. However, as seen in table 1, More ⊕ Far gives a slightly

lower probability 𝑝 of a much large number of happy people 𝑛 + 𝑁. Thus, More is

Better and Simple Separability imply Anti-Timidity: A slightly smaller probability

of a much large number of happy lives is better than a slightly higher probability of

many fewer happy lives. And, as we saw in the previous section, Anti-Timidity (to-

gether with transitivity) implies Probability Fanaticism. Therefore, More is Better

and Simple Separability (together with transitivity) imply Probability Fanaticism.

To deny Probability Fanaticism, onemust rejectMore is Better, Simple Separability

or transitivity—yet they all seem intuitively compelling.
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Table 1

More ⊕ Far vs. Less ⊕ Far

State 1 State 2 State 3
Probability 𝑝 𝑞 1 − 𝑝 − 𝑞

More ⊕ Far 𝑛 + 𝑁 0 0
Less ⊕ Far 𝑛 𝑛 0

3.3 Stochastic Dominance and Simple Separability imply Prob-

ability Fanaticism

Another related argument for Probability Fanaticism is that it follows from Sim-

ple Separability and another very compelling principle, namely, Stochastic Domi-

nance.29 Let 𝑋 = {𝑥1, 𝑝1; 𝑥2, 𝑝2 ; … } stand for prospect 𝑋 that gives non-zero

probabilities 𝑝1, 𝑝2, and so on, of outcomes 𝑥1, 𝑥2, and so on. Stochastic Domi-

nance then states the following:30

StochasticDominance: For all prospects𝑋 = {𝑥1, 𝑝1; 𝑥2, 𝑝2 ; … }

and 𝑌 = {𝑦1, 𝑞1; 𝑦2, 𝑞2 ; … }, 𝑋 is at least as good as 𝑌 if, for all out-
29The presentation follows closely Russell (2021, pp. 30–33). See Wilkinson (2022, §VI A) for

a very similar argument. Also see Tarsney (2020), Beckstead and Thomas (2020) and Goodsell
(2021).

30Buchak (2013, p. 42). More precisely, this is first-order stochastic dominance, an idea that was
introduced to statistics by Mann and Whitney (1947) and Lehmann (1955), and to economics by
Quirk and Saposnik (1962). The name ‘first-degree stochastic dominance’ is due to Hadar and
Russell (1969, p. 27).
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comes 𝑜,

∑
{𝑖 | 𝑥𝑖≿𝑜}

𝑝𝑖 ≥ ∑
{𝑗 | 𝑦𝑗≿𝑜}

𝑞𝑗.

If in addition, for some outcome 𝑢,

∑
{𝑖 | 𝑥𝑖≿𝑢}

𝑝𝑖 > ∑
{𝑗 | 𝑦𝑗≿𝑢}

𝑞𝑗,

then 𝑋 is better than 𝑌.

One violates Stochastic Dominance if, for all outcomes, some prospect 𝑋 gives an

at least as high probability of an at least as great outcome as some other prospect 𝑌

does, but 𝑋 is not judged at least as good as 𝑌. One also violates Stochastic Dom-

inance if, in addition, 𝑋 gives a greater probability of an at least as great outcome

as 𝑌 does for some outcome—yet 𝑋 is not judged better than 𝑌.

To see how Simple Separability and Stochastic Dominance imply Probability

Fanaticism, consider the following prospects:

Safe vs. Risky:

Safe Certainly gives one happy life.

Risky Gives probability 𝑝 > 0 of 𝑛+1 happy lives (a great outcome)

and otherwise nothing.

Suppose 𝑝 is tiny. Then, the comparison between Risky and Safe can be consid-

ered at a more abstract level whereby it simply corresponds to Positive Probability
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Fanaticism. So, Probability Fanaticism is true if Risky is better than Safe. Also, sup-

pose you face the choice between Safe and Risky, while the inhabitants of a distant

Earth-like planet face the following prospect (see table 2):

Twin Earth Gives 𝑝 chance of nothing, 𝑞 chance of one happy life, 𝑞

chance of two happy lives, 𝑞 chance of three happy lives, … , 𝑞 chance

of 𝑛 happy lives, where 𝑞 < 𝑝.

Table 2

Twin Earth

Probability 𝑝 𝑞 𝑞 𝑞 … 𝑞

Safe 1 1 1 1 … 1
Risky 𝑛 + 1 0 0 0 … 0
Twin Earth 0 1 2 3 … 𝑛

When you take into account the prospect Twin Earth is facing, your options

are as follows (see table 3):

Mixed Prospects:

Safe ⊕ Twin Earth Gives 𝑝 chance of one happy life, 𝑞 chance of

two happy lives, 𝑞 chance of three happy lives, 𝑞 chance of four happy

lives, … , 𝑞 chance of 𝑛 + 1 happy lives.

Risky ⊕ Twin Earth Gives 𝑝 chance of 𝑛 + 1 happy lives, 𝑞 chance

of one happy life, 𝑞 chance of two happy lives, 𝑞 chance of three happy

lives, … , 𝑞 chance of 𝑛 happy lives.
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Table 3

Mixed Prospects

Probability 𝑝 𝑞 𝑞 … 𝑞

Safe ⊕ Twin Earth 1 2 3 … 𝑛 + 1
Risky ⊕ Twin Earth 𝑛 + 1 1 2 … 𝑛

Next, given that 𝑝 is greater than 𝑞, we may split the first column of table 3

into two columns that give probabilities 𝑝 − 𝑞 and 𝑞 (respectively), as shown in the

following table:

Table 4

Mixed Prospects: Split

Probability 𝑝 − 𝑞 𝑞 𝑞 𝑞 … 𝑞

Safe ⊕ Twin Earth 1 1 2 3 … 𝑛 + 1
Risky ⊕ Twin Earth 𝑛 + 1 𝑛 + 1 1 2 … 𝑛

Next, we may reorder the outcomes of Risky ⊕ Twin Earth that are associated

with probability 𝑞 by moving each of them to the column on their left (see table

5). The leftmost outcome associated with probability 𝑞 (i.e., 𝑛 + 1) is moved to the

rightmost column (where 𝑛 is in table 4).

Table 5

Mixed Prospects: Reorder

Probability 𝑝 − 𝑞 𝑞 𝑞 𝑞 … 𝑞

Safe ⊕ Twin Earth 1 1 2 3 … 𝑛 + 1
Risky ⊕ Twin Earth 𝑛 + 1 1 2 3 … 𝑛 + 1
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It is now evident from table 5 that the only difference between Safe ⊕ Twin

Earth and Risky ⊕ Twin Earth is that the former gives probability 𝑝 − 𝑞 of one

happy life, while the latter gives the same probability of 𝑛 + 1 happy lives. As it

is better to obtain 𝑛 + 1 happy lives than just one happy life, Risky ⊕ Twin Earth

stochastically dominates Safe ⊕ Twin Earth: For all outcomes, it gives an at least as

high probability of an at least as great outcome as Safe ⊕ Twin Earth does, and for

one outcome, Risky ⊕ Twin Earth gives a greater probability of an at least as great

outcome as Safe ⊕ Twin Earth does. So, by Stochastic Dominance, Risky ⊕ Twin

Earth is better than Safe ⊕ Twin Earth.

Finally, given that Risky ⊕ Twin Earth is better than Safe ⊕ Twin Earth, it fol-

lows by Simple Separability that Risky is better than Safe: Probability Fanaticism

is true. So, Probability Fanaticism follows from Simple Separability and Stochastic

Dominance.31 If one wishes to avoid Probability Fanaticism, one must reject Sim-

ple Separability or Stochastic Dominance, which are both intuitively compelling.
31This argument assumes that the number and not the location of happy lives is all that matters.

More generally, Probability Fanaticism follows fromStochasticDominance, Simple Separability and
the following principle:

Positive Compensation: For any near good 𝑥 and far good 𝑦, there is a far good
𝑧 such that 𝑥 ⊕ 𝑦 ∼ 0 ⊕ 𝑧, and there is a near good 𝑤 such that 𝑥 ⊕ 𝑦 ∼ 𝑤 ⊕ 0.

According to this principle, we can always compensate for making things worse nearby by making
things sufficiently better far away (and vice versa). See Russell (2021) for the full argument.
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3.4 Stochastic Dominance and Separability are jointly inconsis-

tent

Above we saw how Probability Fanaticism follows from Simple Separability and

Stochastic Dominance. However, Stochastic Dominance and a generalization of

Simple Separability are jointly inconsistent.32 This undermines the argument for

Probability Fanaticism from Stochastic Dominance and Simple Separability.

Unlike Simple Separability, the generalization of Simple Separability applies to

prospects that have an infinite number of possible outcomes. It states the follow-

ing:33

Separability:

i For all near prospects 𝑋 and 𝑌, and any far prospect 𝑍, 𝑋 ≻ 𝑌

if and only if 𝑋 ⊕ 𝑍 ≻ 𝑌 ⊕ 𝑍.

ii For all far prospects 𝑋 and 𝑌, and any near prospect 𝑍, 𝑋 ≻ 𝑌

if and only if 𝑍 ⊕ 𝑋 ≻ 𝑍 ⊕ 𝑌.

To see why Stochastic Dominance and Separability are jointly inconsistent,

consider the following versions of St. Petersburg games (see table 6):

St. PetersburgGames: A fair coin is flipped until it comes up heads.

St. Petersburg Gives 2𝑛 happy lives, where 𝑛 is the number of coin

flips (and otherwise it gives nothing).
32This argument is from Russell (2021).
33Russell (2021, p. 15).
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St. Petersburg− Gives 2𝑛 − 1 happy lives, where 𝑛 is the number of

coin flips (and otherwise it gives nothing).

St. Petersburg− gives the same probabilities as the St. Petersburg game but slightly

worse outcomes. It seems clear that St. Petersburg is better than St. Petersburg−;

indeed, this is what Stochastic (and Statewise) Dominance tells us.34

Table 6

St. Petersburg Games

No. of flips 1 2 3 …
Probability 1/2 1/4 1/8 …

St. Petersburg 2 4 8 …
St. Petersburg− 1 3 7 …

Separability then tells us that two copies of St. Petersburg, one here and the

other in a distant galaxy, are better than two copies of St. Petersburg−, one here

and the other in a distant galaxy: As St. Petersburg is better than St. Petersburg−,

by Separability, St. Petersburg ⊕ St. Petersburg is better than St. Petersburg− ⊕

St. Petersburg. Again, because St. Petersburg is better than St. Petersburg−, St.

Petersburg− ⊕ St. Petersburg is better than St. Petersburg− ⊕ St. Petersburg−.

Thus, by transitivity, St. Petersburg ⊕ St. Petersburg is better than St. Petersburg−

⊕ St. Petersburg−.

However, we can arrange themechanisms of these games so that St. Petersburg−

⊕ St. Petersburg− stochastically dominates St. Petersburg ⊕ St. Petersburg. In this
34According to Statewise Dominance, a prospect is better than another prospect if it gives a

better outcome in all states.
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case, the results of the two St. Petersburg games depend on the outcome of flipping

a dime. And, the results of the two St. Petersburg− games depend on the outcomes

of flipping the dime and a penny (see table 7):

Correlated St. Petersburg Games: A dime is flipped until it comes

up heads, and a penny is flipped once.

Near and Far St. Petersburg Give 2𝑛 happy lives, where 𝑛 is the num-

ber of coin flips with the dime.

Near St. Petersburg− Gives one happy life if the penny comes up

heads. Otherwise, it gives twice as much as St. Petersburg minus one.

Far St. Petersburg− Gives one happy life if the penny comes up tails.

Otherwise, it gives twice as much as St. Petersburg minus one.

Table 7

Correlated St. Petersburg Games

Outcome 𝐻, 1 𝐻, 2 𝐻, 3 … 𝑇, 1 𝑇, 2 𝑇, 3 …
Probability 1/4 1/8 1/16 … 1/4 1/8 1/16 …

Near St. Petersburg 2 4 8 … 2 4 8 …
Far St. Petersburg 2 4 8 … 2 4 8 …
Near St. Petersburg− 1 1 1 … 3 7 15 …
Far St. Petersburg− 3 7 15 … 1 1 1 …

‘𝐻 ’ and ‘𝑇 ’ indicate the outcome of flipping the penny, and
‘1’, ‘2’, … indicate the number of coin flips with the dime.

Note that both the Near and the Far St. Petersburg games give the same proba-

bilities of the same outcomes as the St. Petersburg game in table 6. Similarly, both
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the Near and the Far St. Petersburg− games give the same probabilities of the same

outcomes as the St. Petersburg− game in table 6. Thus, Near St. Petersburg ⊕ Far

St. Petersburg should be better than Near St. Petersburg− ⊕ Far St. Petersburg−.

However, as seen in table 8, Near St. Petersburg ⊕ Far St. Petersburg gives

the same probabilities of the same outcomes as Near St. Petersburg− ⊕ Far St.

Petersburg−. In every state, they result in the same number of happy lives. So,

Near St. Petersburg ⊕ Far St. Petersburg is stochastically equivalent to Near St.

Petersburg− ⊕ Far St. Petersburg−. By Stochastic Dominance, each prospect is at

least as good as the other. Therefore, they are equally good.

Table 8

Mixed St. Petersburg Games

Outcome 𝐻, 1 𝐻, 2 𝐻, 3 … 𝑇, 1 𝑇, 2 𝑇, 3 …
Probability 1/4 1/8 1/16 … 1/4 1/8 1/16 …

St. Petersburg ⊕ St. Petersburg 4 8 16 … 4 8 16 …
St. Petersburg− ⊕ St. Petersburg− 4 8 16 … 4 8 16 …

‘𝐻 ’ and ‘𝑇 ’ indicate the outcome of flipping the penny, and
‘1’, ‘2’, … indicate the number of coin flips with the dime.
‘Near’ and ‘Far’ have been omitted from the prospects’ names.

Here is a recap of the argument: Stochastic Dominance tells us that St. Peters-

burg is better than St. Petersburg−. Separability then tells us that Near St. Peters-

burg ⊕ Far St. Petersburg is better thanNear St. Petersburg− ⊕ Far St. Petersburg−.

However, Near St. Petersburg ⊕ Far St. Petersburg is stochastically equivalent to

Near St. Petersburg− ⊕ Far St. Petersburg−. So, they must be equally good. But

Near St. Petersburg ⊕ Far St. Petersburg cannot both be better than and equally as
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good as Near St. Petersburg− ⊕ Far St. Petersburg−. Thus, Stochastic Dominance

and Separability are jointly inconsistent. Either St. Petersburg is not better than

St. Petersburg−, even though it stochastically dominates it. Alternatively, Near St.

Petersburg ⊕ Far St. Petersburg is not better than Near St. Petersburg− ⊕ Far St.

Petersburg−, even though Separability tells us so.

To summarize, Stochastic Dominance and Simple Separability imply Proba-

bility Fanaticism. However, Stochastic Dominance and a generalization of Simple

Separability are jointly inconsistent.35 Moreover, whatever the justification of Sim-

ple Separability is should also apply to Separability. As Russell (2021, pp. 14–15)

writes: “What would the motivation be for it [Simple Separability] that is not also

motivation for the unrestricted principle [Separability]? It can’t be simply the idea

that if what is going on in distant space and time is the same for both of two options,

then it is irrelevant to which is better. That idea supports full-fledged Separability.

So is there something special about simple prospects that makes their value insen-

sitive to what is going on in distant space and time?” Unless there is some unique

justification for Simple Separability that does not also apply to the generalized ver-

sion, one has no reason to accept Simple Separability if one rejects Separability.

And, Stochastic Dominance tells us that Separability is wrong. Thus, for a lack of

a unique justification for Simple Separability, the argument for Probability Fanati-

cism from Stochastic Dominance and Simple Separability does not go through.
35As before, this argument assumes that the number, and not the location, of happy lives is all

that matters. More generally, Stochastic Dominance, Separability and Positive Compensation are
jointly inconsistent. See Russell (2021) for the full argument.
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3.5 Stochastic Dominance, Negative Reflection andBackground

Independence imply Probability Fanaticism

We have seen that Simple Separability and Stochastic Dominance imply Probabil-

ity Fanaticism, but Separability and Stochastic Dominance are jointly inconsistent.

This section shows that Stochastic Dominance, together with two other plausible

principles, implies Probability Fanaticism.36

Consider the following prospects:

Safe* vs. Risky*:

Safe* Certainly gives a good outcome (utility 𝑣).

Risky* Gives a tiny probability 𝑝 > 0 of a great outcome (utility 𝑉).

It can be shown that for some background prospect 𝐵, which is probabilistically

independent of both Safe* and Risky*, Risky* ⊕ 𝐵 stochastically dominates Safe*

⊕ 𝐵.37 For this to happen, we need Risky* ⊕ 𝐵 to have at least as high a probability

as Safe* ⊕ 𝐵 of resulting in at least utility 𝑢, for all possible utilities 𝑢. Choose any

utility 𝑢 < 𝑉. Safe* certainly gives utility 𝑣, so the probability that Safe* ⊕ 𝐵 gives

at least utility 𝑢 is the probability that 𝐵 gives at least utility 𝑢 − 𝑣 (area 𝑟 + 𝑠 in
36This argument is from Wilkinson (2022), and the presentation follows closely Russell (2021).
37Wilkinson (2022, §VI). See also Tarsney (2020). Tarsney (2020) explores the idea that Stochas-

tic Dominance is a sufficient principle of rationality. Prospects that give a higher expected utility
but would not otherwise stochastically dominate their alternatives can become stochastically domi-
nant given sufficient background uncertainty. However, background uncertainty generates stochas-
tic dominance much less readily when the prospect involves tiny probabilities of huge payoffs. So,
Tarsney (2020) argues that Stochastic Dominance as a sufficient principle of rationality can vindi-
cate the intuition that we are often permitted to decline gambles like Pascal’s Mugging or the St.
Petersburg game. However, as the following argument shows, Stochastic Dominance sometimes
demands that we make fanatical choices.
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the graph below). Risky* ⊕ 𝐵, in turn, gives at least utility 𝑢 if either Risky* gives a

great outcome (utility 𝑉 > 𝑢) or if 𝐵 gives at least utility 𝑢. Denote the probability

that 𝐵 gives at least utility 𝑢 by 𝑠 (see area 𝑠 in the graph below). So, the probability

that Risky* ⊕ 𝐵 gives at least 𝑢 is 𝑝 + (1 − 𝑝)𝑠.
Pr

ob
ab

ili
ty

(ordered by utility)
Possible Outcomes of 𝐵

Probability Distribution of 𝐵

𝑢𝑢 − 𝑣

𝑠𝑟𝑞

It can be shown that this (the probability that Risky* ⊕ 𝐵 gives at least 𝑢) will

be greater than the probability that Safe* ⊕ 𝐵 gives at least 𝑢 if the area 𝑟 is less than

or equal to the area 𝑞 multiplied by 𝑝.38 So, if the area 𝑟 is small enough compared

to area 𝑞, then Risky* ⊕ 𝐵 gives an at least as high probability of 𝑢 as Safe* ⊕ 𝐵

does. For this to happen with all 𝑢, the interval between 𝑢 and 𝑢 − 𝑣 needs to be

tiny enough. And for that to happen, the probabilities in 𝐵 must go down slowly
38

𝑝 + 𝑠(1 − 𝑝) ≥ 𝑟 + 𝑠

⟺ 𝑠 + 𝑝(1 − 𝑠) ≥ 𝑟 + 𝑠

⟺ 𝑝(𝑞 + 𝑟) ≥ 𝑟

⟺ 𝑟 ≤ 𝑝𝑞 + 𝑝𝑟

⟺ 𝑟(1 − 𝑝) ≤ 𝑝𝑞

⟺ 𝑟 ≤ 𝑝𝑞
1 − 𝑝

, for which 𝑟 ≤ 𝑝𝑞 is a sufficient condition.
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enough as we approach −∞ and rise and fall quickly enough as we pass the peak of

the curve. There are some probability distributions with this property.39 So, with

some background prospect 𝐵, Risky* ⊕ 𝐵 is better than Safe* ⊕ 𝐵 by Stochastic

Dominance.

Next, consider the following principle:40

Negative Reflection: For prospects 𝑋 and 𝑌 and a question 𝑄, if 𝑋

is not better than 𝑌 conditional on any possible answer to 𝑄, then 𝑋

is not better than 𝑌 unconditionally.

Given that Risky* ⊕ 𝐵 is better than Safe* ⊕ 𝐵 (by Stochastic Dominance), Nega-

tive Reflection tells that 𝐵 must have some possible outcome 𝑏 such that Risky* ⊕

𝑏 is better than Safe* ⊕ 𝑏.

Finally, consider the following principle:41

Background Independence: For any near prospects 𝑋 and 𝑌 and

any far outcome 𝑎, 𝑋 ≻ 𝑌 if and only if 𝑋 ⊕ 𝑎 ≻ 𝑌 ⊕ 𝑎.
39Wilkinson (2022, §VI) and Tarsney (2020).
40Russell (2021, p. 19). Compare Negative Reflection to the following related principle (Russell,

2021, p. 23):

Positive Reflection: For prospects 𝑋 and 𝑌 and a question 𝑄, if 𝑋 is at least as
good as 𝑌 conditional on any possible answer to 𝑄, then 𝑋 is at least as good as 𝑌
unconditionally.

Both reflection principles are related to the Sure Thing Principle due to Savage (1972, pp. 21–22):

TheSureThing Principle: For all prospects 𝑋 and 𝑌, if an agent would not prefer
𝑋 over 𝑌 if they learnt that some event 𝐸 has happened, or if they learnt that 𝐸
has not happened, then the agent does not prefer 𝑋 over 𝑌. Moreover, if the agent
would prefer 𝑌 to 𝑋 if they learnt that 𝐸 has happened, and they would not prefer
𝑋 to 𝑌 if they learnt that 𝐸 has not happened, then the agent prefers 𝑌 to 𝑋.

41Wilkinson (2022, p. 467) and Russell (2021, p. 28).
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Background Independence is similar to Separability. But unlike Separability, it re-

quires that the ‘background prospect’ involves no uncertainty.42 Given that Risky*

⊕ 𝑏 is better than Safe* ⊕ 𝑏 (by Stochastic Dominance and Negative Reflection),

Background Independence implies that Risky* is better than Safe*. Thismeans that

Probability Fanaticism is true.

To conclude, three plausible principles, Stochastic Dominance, Negative Re-

flection and Background Independence, imply Probability Fanaticism. Thus, to

deny Probability Fanaticism, one must reject Stochastic Dominance, Negative Re-

flection or Background Independence.

3.6 Stochastic Dominance and Negative Reflection imply Prob-

ability Fanaticism is false

We just saw how Stochastic Dominance, Negative Reflection and Background In-

dependence imply Probability Fanaticism. However, if Probability Fanaticism is

true, then two of the premises of the previous argument—Stochastic Dominance

and Negative Reflection—are jointly inconsistent.43 Thus, the argument cannot be

sound.

To see why Stochastic Dominance and Negative Reflection are jointly incon-

sistent if Probability Fanaticism is true, consider the following versions of the St.

Petersburg game:

42Background Independence is related to the Egyptology objection to the Average View in pop-
ulation ethics. See McMahan (1981, p. 115) and Parfit (1984, p. 420).

43This argument is from Russell (2021, §3) and Russell and Isaacs (2021). Also see Chalmers
(2002) and Beckstead and Thomas (2020, §4).
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St. PetersburgGames: A fair coin is flipped until it comes up heads.

St. Petersburg Gives 2𝑛 happy lives, where 𝑛 is the number of coin

flips.

St. Petersburg+ Gives 2𝑛 + 1 happy lives, where 𝑛 is the number of

coin flips.

The outcomes of St. Petersburg+ are better than the outcomes of St. Petersburg. So,

by Stochastic Dominance, St. Petersburg+ is better than St. Petersburg.

However, if Probability Fanaticism is true, then none of the outcomes of St.

Petersburg+ are as good as the prospect St. Petersburg. This is because St. Peters-

burg and St. Petersburg+ are better than any possible finite payoffs. So, any possible

payoff of St. Petersburg+ is worse than the prospect St. Petersburg. Negative Reflec-

tion, therefore, implies that St. Petersburg+ is not better than St. Petersburg. Con-

ditional on any way St. Petersburg+ could turn out, St. Petersburg+ is not better

than St. Petersburg, so St. Petersburg+ cannot be better than St. Petersburg. How-

ever, St. Petersburg+ is better than St. Petersburg by Stochastic Dominance. So,

if Probability Fanaticism is true, either Stochastic Dominance or Negative Reflec-

tion needs to go. They are jointly inconsistent. Thus, Stochastic Dominance and

Negative Reflection imply that Probability Fanaticism is false.44

Suppose that Probability Fanaticism keeps Stochastic Dominance (and gives

up Negative Reflection). In that case, it is dynamically inconsistent and vulnera-
44StochasticDominance andNegative Reflection imply that Probability Fanaticism is false. They

cannot, therefore, be used in an argument for Probability Fanaticism. However, a principle that is
related toNegative Reflection, togetherwith StochasticDominance andBackground Independence,
implies that Positive Fanaticism or Negative Fanaticism is true. See Russell (2021, pp. 37–38).
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ble to money pumps.45 Consider for example the following case: You start with

St. Petersburg+. Once the result of St. Petersburg+ is known, you can pay $100 to

exchange the outcome St. Petersburg+ for the prospect St. Petersburg. Because any

possible finite payoff of St. Petersburg+ is worse than the prospect St. Petersburg,

you would accept this trade. But before finding out the result of St. Petersburg+,

you can pay $50 to simply keep the prospect St. Petersburg+ and receive no further

offers. You know that if you do not pay this $50, you will end up with prospect St.

Petersburg and with $100 less in your wallet. But if you do pay this $50, then you

will end up with prospect St. Petersburg+, and you will only have paid $50. There-

fore, by Stochastic Dominance, you should pay $50 to avoid any further offers. But

you have then beenmoney pumped, as you have paid for something that you could

have kept for free had you refused all the offers.46 So, Probability Fanaticism com-

bined with Stochastic Dominance is vulnerable to money pumps.

To conclude, this section has discussed arguments for and against Probabil-

ity Fanaticism. §3.1 showed that Anti-Timidity and transitivity imply Probability

Fanaticism. Then, §3.2 showed that More is Better and Simple Separability im-

ply Probability Fanaticism. §3.3 showed that Stochastic Dominance and Simple

Separability imply Probability Fanaticism. However, §3.4 showed that Stochastic
45This argument is from Russell and Isaacs (2021, p. 4 n. 5). Russell and Isaacs (2021) show that

Probability Fanaticism violates Countable Independence, which is similar to Negative Reflection.
46If Probability Fanaticism rejects both Stochastic Dominance and Negative Reflection, then

St. Petersburg+ is not better than St. Petersburg. However, you are still permitted to pay to keep
St. Petersburg+ and receive no further offers. In fact, you are permitted to pay any finite amount
to receive no further offers; whichever finite sum you pay, you will face a prospect with infinite
expected utility. Thus, Probability Fanaticism still permits you tomake a series of trades that results
in a sure loss.
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Dominance and (generalized) Separability are jointly inconsistent. §3.5 showed

that Stochastic Dominance, Negative Reflection and Background Independence

imply Probability Fanaticism. But §3.6 showed that Stochastic Dominance and

Negative Reflection imply that Probability Fanaticism is false. §3.6 also showed

that Probability Fanaticism is vulnerable to exploitation by money pumps. The de-

bate between proponents and opponents of Probability Fanaticism is inconclusive,

as there are strong arguments for and against it. However, as Russell (2021, p. 5)

writes, “Whatever the truth of the matter, the ethics of huge numbers is deeply

weird and full of surprises.”

4 Bounded utilities

The rest of the sections discuss alternatives to Probability Fanaticism. This section

explores the idea that utilities are bounded above and below.

Boundedness of utilities has been discussed as a possible alternative to Prob-

ability Fanaticism.47 If utilities are real valued, then Boundedness means the fol-

lowing:

Boundedness: There is some 𝑀 ∈ ℝ such that for all outcomes 𝑥,

|𝑢(𝑥)| < 𝑀.

In other words, Boundedness rules out arbitrarily and infinitely good outcomes.

The following discussion focuses on Boundedness in the context of Expected

Utility Theory. As discussed in Chapter 1 of this thesis, standard axiomatizations
47See Beckstead and Thomas (2020, §2.1) and Chapter 1 of this thesis.
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of expected-utility maximization require utilities to be bounded.48 Bounded util-

ities are, therefore, the standard in decision theory. However, bounded utilities

seem troubling from the point of view of ethics. It seems odd that, for example,

additional happy lives matter less the more happy lives there already are or that ad-

ditional headaches matter less the more headaches (or other negative experiences)

there already are. Also, bounded utilities imply that it is better to save some (very

large) number 𝑛 of lives for sure than to save any number of lives with a probabil-

ity of almost one.49 This happens when the value of 𝑛 happy lives is close to the

upper bound of utilities as then additional happy lives do not contribute much to

expected utility.

Boundedness gives ethically even more untenable prescriptions. Consider for

example the following prospects (see table 9):

Happy Lives vs. Headaches: A fair coin is flipped.

Prospect 𝐴 Gives some large number 𝑚 of happy lives with heads,

and one person gets a headache with tails.

Prospect 𝐵 Gives some much larger number 𝑀 of happy lives with

heads, and two people get headaches with tails.

Suppose that the values of 𝑚 and 𝑀 happy lives are close to the upper bound of

utilities. In that case, the additional happy lives in 𝐵 may not contribute enough to

𝐵’s expected utility to outweigh the disvalue of the possible additional headache.
48See Kreps (1988, pp. 63–64), Fishburn (1970, pp. 194, 206–207), Hammond (1998,

pp. 186–191) and Russell and Isaacs (2021).
49More generally, Boundedness violates Anti-Timidity. See Beckstead andThomas (2020, §2.1).
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Then, Boundedness (from above) implies that 𝐴 is better than 𝐵—which seems

wrong from an ethical point of view.50

Table 9

Happy Lives vs. Headaches

Heads Tails

A Many happy lives One headache
B Very many happy lives Two headaches

Next, consider the following prospects (see table 10):

Unhappy Lives vs. Lollipops: A fair coin is flipped.

Prospect 𝐶 Gives some large number 𝑚 of unhappy lives with heads,

and one person gets a lollipop with tails.

Prospect 𝐷 Gives a much larger number 𝑀 of unhappy lives with

heads, and two people get lollipops with tails.

For similar reasons as explained above, 𝐷 may be better than 𝐶 if utilities are

bounded below.51 The implications of Boundedness is ethically untenable; the

possibility of one additional lollipop should not compensate for an equally likely

chance of many additional unhappy lives.
50This argument is from Beckstead and Thomas (2020, §3.3).
51See Beckstead and Thomas (2020, §3.4).
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Table 10

Unhappy Lives vs. Lollipops

Heads Tails

C Many unhappy lives One lollipop
D Very many unhappy lives Two lollipops

Boundedness also implies that sometimes one should choose a small proba-

bility of a mediocre payoff instead of a high probability of a great payoff—which

violates More is Better. To see how this violation happens, consider the following

prospects (see table 11):52

Great vs. Mediocre Past:

Great Gives some great payoff (such as verymany happy lives) if hu-

manity’s past was great (high probability 𝑝); otherwise, nothing hap-

pens.

Mediocre Gives some mediocre payoff (such as a few happy lives) if

humanity’s past was mediocre (small probability 1 − 𝑝); otherwise,

nothing happens.

In this case, Boundedness implies that Mediocre might be better than Great. If

humanity’s past was great (in which case the value of the world is near the up-

per bound of utilities), then the great payoff does not contribute much to utility.

However, if humanity’s past was mediocre, then the mediocre payoff makes a large

contribution to utility. Thus, Boundedness implies that one should choose a small
52This argument is from Beckstead and Thomas (2020, §3.5).
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probability of a mediocre payoff (and otherwise nothing) instead of a high proba-

bility of a great payoff (and otherwise nothing). This is a violation ofMore is Better.

Table 11

Great vs. Mediocre

Great past Mediocre past

Probability 𝑝 1 − 𝑝 < 𝑝

Great Many happy lives Nothing
Mediocre Nothing A few happy lives

We have seen that Boundedness has ethically worrying implications. Chap-

ter 1 of this thesis shows another troubling feature of Boundedness. It shows that

decision theories on which utilities are bounded, such as Expected Utility Theory,

violate Ex Ante Pareto if combined with an additive axiology, such as Total Utili-

tarianism. According to Total Utilitarianism, a population is better than another

just in case the total quantity of well-being it contains is greater. Ex Ante Pareto, in

turn, states the following:

Ex Ante Pareto: For all prospects 𝑋 and 𝑌, if 𝑋 is at least as good as

𝑌 for everyone, and 𝑋 is better than 𝑌 for some, then 𝑋 is better than

𝑌.

The combination of Expected Utility Theory and Total Utilitarianism violates Ex

Ante Pareto because the total quantity of well-being might be infinite or arbitrarily

large. Thus, there must be a non-linear transformation from the total quantity of

well-being into utilities used in decision-making. This non-linear transformation
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is required if one has a non-zero credence in the possibility that an infinite or ar-

bitrarily large number of individuals exist. But it is also required if one wishes to

avoid Probability Fanaticism. However, such a transformation leads to violations

of Ex Ante Pareto. So, the reconciliation of Expected Utility Theory and Total Util-

itarianism prescribes prospects that are better for none and worse for some. Chap-

ter 1 also discusses how this relates to a well-known result in this area, namely,

Harsanyi’s social aggregation theorem.

Chapter 2 of this thesis is somewhat related to the discussion of Bounded-

ness. It points out that standard axiomatizations of Expected Utility Theory violate

StatewiseDominancewith prospects that involve possible states of zero probability.

Statewise Dominance says the following:

Statewise Dominance: If the outcome of prospect 𝑋 is at least as

good as the outcome of prospect 𝑌 in all states, and the outcome of 𝑋

is better than the outcome of 𝑌 in some possible state, then 𝑋 is better

than 𝑌.

At least at first glance, ExpectedUtilityTheory tells us to be indifferent between two

prospects when they are otherwise the same, except that one gives a better outcome

than the other in a possible state of zero probability. But as some have suggested,

Expected Utility Theory might be supplemented with dominance reasoning to get

the verdict that the dominating prospect is better than the dominated one. How-

ever, Chapter 2 shows that if Expected Utility Theory is supplemented with domi-

nance reasoning in this way, it will violate the Continuity axiom of Expected Utility
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Theory. So, if an expected-utility maximizer wishes to retain Statewise Dominance

even in cases that involve possible states of zero probability, they must adopt some

axiomatization of Expected Utility Theory that does not have Continuity as one of

the axioms.

To conclude, bounded utilities have been proposed as an alternative to Proba-

bility Fanaticism. Boundedness follows from standard axiomatizations of Expected

Utility Theory, so it is the orthodox view in decision theory. However, Bounded-

ness is troubling from an ethical point of view. For example, if utilities are bounded,

it is better to save some (very large) number 𝑛 of lives for sure than to save any

number of lives with a probability of almost one. Also, it sometimes implies that

the possibility of a very large number of additional happy lives cannot compensate

for the disvalue of an equally likely additional headache. Similarly, it sometimes

implies that the possibility of a single additional lollipop can compensate for the

disvalue of an equally likely possibility of a very large number of unhappy lives.

Also, Boundedness sometimes implies that one should choose a small probability

of a mediocre outcome over a high probability of a great outcome. Furthermore,

Chapter 1 of this thesis shows that decision theories on which utilities are bounded

violate Ex Ante Pareto if combined with an additive axiology. Also, as shown in

Chapter 2, standard axiomatizations of Expected Utility Theory violate Statewise

Dominance in cases that involve possible states of zero probability.
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5 Probability Discounting

This section discusses another alternative to Probability Fanaticism: discounting

small probabilities.53

5.1 Discounting small probabilities

In response to cases that involve very small probabilities of huge payoffs, some

have argued that we should discount very small probabilities down to zero—let’s

call this Probability Discounting. For example, Monton (2019) argues that small

probabilities should be discounted down to zero, while Smith (2014b) argues that

one is rationally permitted, but not required, to do so.54 Probability Discounting

avoids the counterintuitive implication that you should pay the stranger in Pas-

cal’s Mugging because it tells you to discount the tiny probability of the mugger

telling the truth. Similarly, Probability Discounting allows one to value the St. Pe-

tersburg game at a reasonable price. In fact, Probability Discounting was originally

proposed by Nicolaus Bernoulli as a solution to the St. Petersburg paradox.55 He
53Note that, unlike here, ‘discounting’ typically does not mean ignoring altogether or bringing

all the way down to zero. For example, ‘temporal discounting’ does not typically mean disvaluing
positive outcomes in the future altogether, but instead, holding them less valuable than similar
outcomes in the present.

54Smith argues that discounting small probabilities allows one to get a reasonable expected util-
ity for the Pasadena game (see [Nover andHájek 2004]). See Hájek (2014), Isaacs (2016) and Lund-
gren and Stefánsson (2020) for criticisms of discounting small probabilities. There is a related dis-
cussion on de minimis principles, on which a risk can be ignored or treated very differently from
other risks if the risk is sufficiently small. See for example Peterson (2002) and Lundgren and Ste-
fánsson (2020).

55Monton (2019) calls discounting small probabilities ‘Nicolausian discounting’ after Nicolaus
Bernoulli. Other proponents of Probability Discounting include, for example, Buffon and Con-
dorcet. See Hey et al. (2010) and Monton (2019, pp. 16–17).
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writes: “[T]he cases which have a very small probability must be neglected and

counted for nulls, although they can give a very great expectation.”56

There are many ways of cashing out Probability Discounting. On one of the

simplest versions of this view (i.e., Naive Discounting), one should conditionalize

on very-small-probability outcomes not occurring and then maximize expected

utility. On this view, there is some threshold probability such that outcomes whose

probabilities are below this threshold are ignored. A slightlymore complicated ver-

sion (i.e., Lexical Discounting) uses very-small-probability outcomes as tiebreakers

in cases where the prospects would otherwise be equally good. Both of these ver-

sions ignore outcomes associated with tiny probabilities. Instead, one could ignore

states of the world that have tiny probabilities of occurring (as State Discounting

does). Chapter 4 of this thesis discusses these and other versions of Probability

Discounting in more detail. It explores what the most plausible version of Proba-

bility Discounting might look like and what are some problems such theories face.

5.2 Implications of Probability Discounting

Two chapters of this thesis examine the implications of Probability Discounting

for population ethics and the value of the far future. These implications are briefly

outlined below.

Population Ethics. The Repugnant Conclusion, introduced by Parfit, states:57

“For any possible population of at least ten billion people, all with a
56Pulskamp (2013, p. 2).
57Parfit (1984, p. 388).
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very high quality of life, there must be some much larger imaginable

population whose existence, if other things are equal, would be better

even though its members have lives that are barely worth living.”

The Repugnant Conclusion is a consequence of standard Total Utilitarianism. The

Repugnant Conclusion strikes many as an unacceptable consequence, and various

attempts at constructing an alternative population axiology to Total Utilitarianism

have been made.58 Nebel (2019) argues for the Repugnant Conclusion via the “In-

trapersonal Repugnant Conclusion”, on which certainty of a mediocre life is better

for individuals than a sufficiently small chance of an excellent life. In Chapter 3

of this thesis, I deny that acceptance of the Intrapersonal Repugnant Conclusion

leads us to the Repugnant Conclusion. I point out that on many views which avoid

the Repugnant Conclusion, we should discount small probabilities down to zero to

avoid an implausibly reckless decision theory. If we do, thenNebel’s crucial premise

of Ex Ante Pareto fails because discounting at the individual level can fail to match

up with discounting at the population level. Thus, Probability Discounting helps

us avoid the Repugnant Conclusion.

Value of the Far Future. Chapter 6 of this thesis discusses the implication of

Probability Discounting for

Longtermism: In the most important decision situations, our acts’

expected influence on the value of the world is mainly determined by

their possible consequences in the far future.59

58For an overview, see Greaves (2017).
59MacAskill (2019) and Greaves and MacAskill (2021).
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According to Longtermism, morally speaking what matters the most is the far fu-

ture. The case for Longtermism is straightforward: Given the enormous number

of people who might exist in the far future, even a tiny probability of affecting how

the far future goes outweighs the importance of our acts’ consequences in the near

term. But if we discount very small probabilities down to zero, we may have an

objection to Longtermism provided that its truth depends on tiny probabilities of

vast value. Contrary to this, Chapter 6 argues that discounting small probabilities

does not undermine Longtermism. However, Probability Discounting might have

implications for what longtermists should focus on.60

5.3 Problems with Probability Discounting

Probability Discountingmight allow us to reject Probability Fanaticism and escape

the Repugnant Conclusion. But it also faces some serious problems, as outlined

below.

Threshold. One obvious problem with Probability Discounting is where the ‘dis-

counting threshold’ is located. When are probabilities small enough to be dis-

counted? Some have proposed possible thresholds. For example, Buffon suggested
60For example, Probability Fanaticismmight imply that ‘effective altruists’ should accept Pascal’s

Wager. See footnote 4. They would have then made a full circle: Donate 10% of your income to
your local church,mosque or synagogue. OrProbability Fanaticismmight imply somethingweirder
(see for example Wilkinson [2022, pp. 445–446]). In contrast, Probability Discounting allows one
to escape this implication, provided that one’s credence in heaven is low enough. Beckstead and
Thomas (2020, §5) show that Probability Fanaticism leads to Infinity Obsession:

Infinity Obsession: Any non-zero probability, no matter how small, of an infinite
payoff is better than any finite payoff for sure.
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that the threshold should be one-in-ten-thousand. And Condorcet gave an amus-

ingly specific threshold: 1 in 144,768. Buffon chose his threshold because it was the

probability of a 56-year-old man dying in one day—an outcome reasonable people

usually ignore.61 Condorcet had a similar justification.62 More recently, Monton

(2019, p. 17) has suggested a threshold of 1 in 2 quadrillion—significantly lower

than the thresholds given by the historical thinkers. Monton (2019, §6.1) thinks

that the threshold is subjective within reason: There is no single objective thresh-

old for everybody.

However, there seems to be no way of choosing the discounting threshold such

that Probability Discounting rules out all and only the objectionable choices.63 For

example, suppose the discounting threshold is just below 1 in 2 quadrillion. In

that case, a prospect that gives any finite payoff for sure, no matter how good, is

worse than a 1 in 2 quadrillion probability of some other finite payoff (assuming

unbounded utilities). But a prospect with a 1 in 2 quadrillion probability does

not seem less objectionable than a prospect with a slightly lower probability. So,

Probability Discounting does not solve the problem it was meant to solve, as it still

implies objectionably fanatical choices. However, this problemmight be somewhat

mitigated by letting the discounting threshold be vague.64

Individuation Problem. Another problem with Probability Discounting comes
61Hey et al. (2010, p. 257). See Monton (2019, pp. 8–9) for a discussion of Buffon’s view.
62Condorcet’s justification for his threshold is that 1 in 144,768 was the difference between the

probability that a 47-year-old man would die within 24 hours and the probability that a 37-year-
old man would, and that difference would not keep anyone awake at night. See Monton (2019,
pp. 16–17).

63This point is raised by Beckstead and Thomas (2020, §3.5).
64Beckstead and Thomas (2020, p. 20). See also Lundgren and Stefánsson (2020, p. 911).
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from individuating outcomes and states. The problem is that if we individuate out-

comes/states very finely by giving a great deal of information about them, then all

outcomes/states will have probabilities below the threshold. As discussed later in

this thesis, one possible solution is to individuate outcomes by utilities. The idea

is that outcomes/states are considered the “same” outcome/state if their associated

utilities are the same.

DominanceViolations. Oneproblem for some versions of ProbabilityDiscount-

ing is that they violate dominance.65 Imagine a lottery that gives you a tiny prob-

ability of some prize (and otherwise nothing), and compare this to a lottery that

surely gives younothing. The former lottery dominates the latter, but some versions

of ProbabilityDiscounting say they are equally good. One can solve this dominance

violation by considering very-small-probability outcomes/states as tiebreakers in

cases where the prospects are otherwise equally good. However, this is not enough

to avoid violating dominance because the resulting views still violate dominance

in more complicated cases (as discussed in Chapter 4).

Money Pumps. Some versions of Probability Discounting, such as Tail Discount-

ing, avoid the abovementioned dominance violations. According to Tail Discount-

ing, one should first order all the possible outcomes of a prospect in terms of bet-

terness. Then one should ignore the ‘tails’, that is, the very best and the very worst

outcomes. Tail Discounting solves the problems with individuating outcomes and

dominance violations. But it also has one big problem: It can be money pumped
65Isaacs (2016), Smith (2016), Monton (2019, pp. 20–21), Lundgren and Stefánsson (2020,

pp. 912–914) and Beckstead and Thomas (2020, §2.3) also discuss Probability Discounting and
dominance violations.
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(as discussed in Chapter 4). So, someone with this view would end up paying for

something they could have kept for free, which makes Tail Discounting less plau-

sible as a theory of instrumental rationality.

In fact, vulnerability to exploitation by money pumps may be one of the most

challenging problem for all versions of ProbabilityDiscounting. Onemoney pump,

in particular, presents a difficult challenge. Probability discounters are vulnerable

to this money pump as a result of violating the Independence axiom of Expected

Utility Theory. The basic problem for Probability Discounting is that by mixing

gambles, one can arbitrarily reduce the probabilities of different states or outcomes

within the compound lottery until these probabilities end up below the discount-

ing threshold. Therefore, mixtures of gambles can end up being valued differently

than the gambles that are mixed together. How probability discounters can avoid

exploitation by money pumps is discussed in Chapter 4 and, in more detail, in

Chapter 5.

Ex Ante Pareto. As discussed in Chapter 3, accepting Ex Ante Pareto and en-

gaging in Probability Discounting gets one in trouble. Consider, for example, the

following case:

Celebratory Gunfire: Someone shoots into the air in an area full of

people during a celebration, which causes people to feel excitement

for a few seconds. The probability of any particular individual being

hit by the bullet when it falls is negligibly small, but there is a high

probability that someone is hit by it.
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We may suppose that the value of everyone feeling excitement is not enough to

outweigh the badness of the likely injury. However, the prospect of shooting into

the air is ex ante better than not shooting for everyone; each individual feels excite-

ment, and the probability of being hit by the bullet is rationally negligible. Thus, Ex

Ante Pareto tells us that shooting into the air is right, even though the bullet will al-

most certainly hit someone. So, if one accepts Probability Discounting, one should

reject Ex Ante Pareto, or onewould permit the infliction of arbitrarily severe harms

for little or no benefits.

Each-WeDilemmas. Another problem Probability Discounting faces is Each-We

Dilemmas, whichwill be discussed inChapter 6. According to Parfit (1984, p. 91), a

theory faces Each-We Dilemmas if “there might be cases where, if each does better

in this theory’s terms, we do worse, and vice versa.” Each-We Dilemmas arise for

Probability Discounting for the same reason as violations of Ex Ante Pareto arise:

Probabilities can accumulate. If many individuals discount a tiny probability of

some event happening, and the probabilities are sufficiently independent for the

different agents, then the total discounted probability can be high. This can result

in catastrophic outcomes. Consider, for example, the following case:

Asteroid: An asteroid is heading toward the Earth and will almost

certainly hit unless stopped. There are multiple asteroid defense sys-

tems, and (unrealistically) each has a tiny probability of hitting the

asteroid and preventing a catastrophe. However, the probability that

one of them succeeds is high if enough of them try. Attempting to stop
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the asteroid involves some small cost 𝜖.

If agents discount the probability of them successfully stopping the asteroid and

consequently do nothing, then the asteroid will almost certainly hit the Earth. But

this outcome could be prevented almost certainly if enough agents attempt to do so.

To solve these kind of cases, probability-discounting agents would need to some-

how take into account the choices other people face and consider whether the col-

lective has a non-negligible chance of making a difference. However, this solution

leads us to another problem: violations of Separability.

Separability. ProbabilityDiscounting violates Separability if the choices other

people face can affect what you ought to do, even when the other agents are far

away and you cannot influence what goes on near them. The solution to Each-We

Dilemmas asks us to change our actions depending on what choices other agents

face. For example, if there was only a single asteroid defense system, then Probabil-

ity Discounting would recommend that the agent operating it not attempt to stop

the asteroid. However, if there are multiple asteroid defense systems, then this ap-

proach would recommend attempting to stop the asteroid because the probability

that someone successfully stops it is non-negligible.

Earlier it was shown that Stochastic Dominance and Separability are jointly in-

consistent. In Russell’s (2021, pp. 13–14) words: “This looks like very bad news

for Separability.” Since violating Separability is a problem for all theories (on pain

of violating Stochastic Dominance), violating Separability may not seem especially

worrying for Probability Discounting. However, it was only shown that Stochas-

tic Dominance and Separability are inconsistent in a case where the outcomes (of
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the near and far prospects) are correlated. In contrast, Probability Discounting vio-

lates Separability even when the outcomes are probabilistically independent for the

different agents. We might think that probabilistic independence makes violating

Separability even worse.

To summarize, I have discussed some problems Probability Discounting faces.

These include choosing the discounting threshold, individuating outcomes/states,

violating dominance, vulnerability to money pumps, violating Ex Ante Pareto, fac-

ing Each-We Dilemmas and violating Separability. These problems will be dis-

cussed in more detail in the following chapters of this thesis. The next section

discusses some alternative approaches to tiny probabilities of vast value.

6 Alternatives

This section discusses other approaches suggested in response to cases that involve

tiny probabilities of huge payoffs.

6.1 Conditionalizing on knowledge

Onepossibility is to conditionalize onone’s knowledge beforemaximizing expected

utility—let’s call this Knowledge-Based Discounting.66 It might be argued that, in

Pascal’sMugging, you know that themugger will not deliver a thousand quadrillion

happy days in the Seventh Dimension. And, possibly, you also know that you will
66See Hong (n.d.) and Francis and Kosonen (n.d.) on Knowledge-Based Discounting.
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not gain a great payoff with the St. Petersburg game.67 Thus, conditionalizing on

knowledge before maximizing expected utility could solve at least some cases with

tiny probabilities of huge payoffs.

But Knowledge-Based Discounting is vulnerable to some of the same problems

Probability Discounting faces, such as money pumps.68 Consider, for example, the

following lotteries:

Ticket 𝐴 Gives a great payoff if you guess all seven lottery numbers

correctly (and otherwise it gives nothing).

Ticket 𝐵 Gives a modest positive payoff if you guess at least five lot-

tery numbers correctly (and otherwise it gives nothing).

Suppose you know that ticket 𝐴 wins nothing, but you do not know that ticket

𝐵 wins nothing. If it is possible to have knowledge in lottery cases, then there

must be some (possibly vague and context-dependent) threshold probability for

when a probability is high enough to count as knowledge. We may suppose that

the probability of not winning with 𝐴 is above this threshold, but the probability

of not winning with 𝐵 is below this threshold. Consequently, 𝐵 is worth some

positive amount, while 𝐴 is worthless (or at most better than nothing). The setup

is as follows: You currently have 𝐵. If you guess at least five lottery numbers right,
67This claim is more contested. It is often argued that one cannot have knowledge in lottery

cases, as it seems that one does not know that one’s lottery ticket will not win, even though it is
very unlikely to win. For a discussion of lottery cases, see for example Smith (2014a). See Hong
(n.d.) for a defense of Knowledge-Based Discounting in the context of the St. Petersburg paradox.
If Knowledge-Based Discounting is to avoid Probability Fanaticism in all cases, then it must be
possible to have knowledge in lottery cases, such as the St. Petersburg paradox.

68See Francis and Kosonen (n.d.).
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then you will be offered 𝐴 in exchange for 𝐵. But if you learn that you guessed five

lottery numbers right, you no longer know that you did not guess all seven numbers

right. In that case, you would only need to have guessed two more numbers right,

and for all you know, youmight have. So, you thenwould prefer 𝐴 to 𝐵 and happily

accept the trade.

This is unfortunate. Right now, you know that you will not win anything with

𝐴. So itwould be better to keep𝐵. However, you also know that if youwin anything

with 𝐵, you will accept the trade and end up with 𝐴. Luckily, you are offered a

chance to avoid this situation: If you pay some amount, you will not be offered 𝐴

in exchange for 𝐵 in case you guess at least five numbers right. And, given that 𝐵

is worth some positive amount while 𝐴 is worth nothing, you accept this offer. But

you have then paid for something you could have kept for free.

More generally, Knowledge-Based Discounting gets you in trouble if there can

be cases where you know that 𝑃, but some evidence would make you lose the

knowledge that 𝑃 and you do not know that such evidence will not arise.69 In

this case, although you know that 𝐴 wins nothing, this belief loses the status of

knowledge if you guess at least five lottery numbers right. And you do not know

that you will not guess at least five lottery numbers right.

To summarize, Knowledge-Based Discounting advises one to conditionalize
69Knowledge-Based Discounting might escape this problem if one accepts the KK Principle: If

one knows that 𝑃, then one also knows that one knows it. If the KK principle is true, then either
you do not know that you will not guess seven numbers correctly (so 𝐴 is worth some positive
amount), or you know that you will not guess at least five numbers correctly (so neither 𝐴 nor 𝐵 is
worth any positive amount). But you cannot know that you will not guess seven numbers correctly
and be uncertain about whether you might lose this knowledge.
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on one’s knowledge beforemaximizing expected utility. Similarly to Probability Fa-

naticism and Probability Discounting, Knowledge-BasedDiscounting is diachron-

ically inconsistent and thus vulnerable to money pumps.

6.2 Assigning zero probability

It seems that every approach to tiny probabilities of huge payoffs has serious short-

comings. In order to escape the paradoxes with non-simple lotteries, one might

be tempted to assign a zero probability to the possibility of the St. Petersburg game

(and its variants).70 The idea is that one can accept Expected UtilityTheory and es-

cape the paradoxical results discussed earlier in this chapter, such asmoney pumps.

However, this solution seems ad hoc. Assignments of probability should only

respond to epistemic reasons. They should not respond to instrumental reasons,

such as getting money pumped.71 Yet, arguments for Bayesianism often rely on

such instrumental reasons: Unless one uses conditionalization to update credences,

onewill get Dutch Booked. However, something elsemight be going on in these ar-

guments. Succumbing to a Dutch Book is an indication that one’s beliefs about the

world are inconsistent. So, the argument for conditionalization is not that failing

to conditionalize gets one Dutch Booked, and that is instrumentally bad. Instead,
70Various people have suggested this (personal correspondence). Note that this proposal does

not avoid Probability Fanaticism—its only purpose is to make Expected Utility Theory behave well
with non-simple lotteries. But it says nothing about cases such as Pascal’s Mugging.

71This is controversial. For example, in epistemology, there is a view that rejects the claim that
only epistemic reasons should influence beliefs:

Pragmatic Encroachment: A difference in pragmatic circumstances can consti-
tute a difference in knowledge.

See Ichikawa and Steup (2018, §12).
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the argument is that getting Dutch Booked is a symptom of having inconsistent

beliefs.72 So, Dutch Book arguments need not rely on the idea that beliefs (or cre-

dence assignments) should respond to instrumental reasons. However, similarly,

one might insist that getting money pumped because one accepts Probability Fa-

naticism is a symptom of having inconsistent beliefs. The money pump shows that

there is something wrong with St. Petersburg-style probability and utility assign-

ments. But it is hard to see why that would be the case.

7 Conclusion

Cases that involve tiny probabilities of vast value present a puzzle as it seems that

all approaches have implausible implications. Themain approaches discussed were

Probability Fanaticism, Boundedness and Probability Discounting. First, the chap-

ter discussed two arguments for maximizing expected utility: the long-run argu-

ment and representation theorems. Next, it explored Probability Fanaticism, on

which tiny probabilities of large positive or negative payoffs can have enormous

positive or negative expected utility (respectively). We saw that there are strong

arguments for and against Probability Fanaticism. Then, the chapter discussed the

possibility that utilities are bounded. Boundedness will be discussed in more de-
72This is, in fact, what Lewis (1999, pp. 404–405) argues: “Note also that the point of any Dutch

book argument is not that it would be imprudent to run the risk that some sneaky Dutchman will
come and drain your pockets. After all, there aren’t so many sneaky Dutchmen around; and any-
way, if ever you see one coming, you can refuse to do business with him. Rather, the point is that
if you are vulnerable to a Dutch book, whether synchronic or diachronic, that means that you have
two contradictory opinions about the expected value of the very same transaction. To hold contra-
dictory opinions may or may not be risky, but it is in any case irrational.”
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tail in Chapters 1 and 2 of this thesis. Finally, the chapter investigated Probability

Discounting, on which tiny probabilities should be ignored in practical decision-

making. Probability Discounting will be the focus of Chapters 3–6. Some other

approaches were also discussed briefly. To conclude, paradoxes concerning tiny

probabilities of vast value show that some intuitively compelling principles of ra-

tionality must be given up.
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